Digit Matrix : Math Puzzles apk

Digit Matrix : Math Puzzles para Android


- REQUIRES ANDROID | Categoria: Education

Classificação 0 De 0 Votos | $ Gratuito



Digit Matrix : Math Puzzles Capturas de tela

→ → → → → → → → → →


Baixar e instalar APK para Android


Cómo configurar Digit Matrix : Math Puzzles APK:

Arquivos APK (Android Package Kit) são os arquivos brutos de um aplicativo Para Android. Saiba como instalar digit-matrix-math-puzzles.apk arquivo em seu telefone em 4 passos simples:

  1. Faça o download do digit-matrix-math-puzzles.apk para o seu dispositivo usando qualquer um de nossos espelhos de download.
  2. Permitir aplicativos de terceiros (não Playstore) em seu dispositivo: Vá para Menu » Configurações » Segurança » . Clique em "Fontes desconhecidas". Você será solicitado a permitir que seu navegador ou gerenciador de arquivos instale APKs.
  3. Localize o arquivo digit-matrix-math-puzzles.apk e clique para instalar: leia todos os prompts na tela e clique em "Sim" ou "Não" de acordo.
  4. Após a instalação, o aplicativo Digit Matrix : Math Puzzles aparecerá na tela inicial do seu dispositivo.

O Digit Matrix : Math Puzzles APK é seguro?

Sim. Fornecemos alguns dos espelhos de download do Apk mais seguros para obter o apk Digit Matrix : Math Puzzles.



Digit Matrix : Math Puzzles v3.1 APK Baixar Espelhos



O que há de novo em v3.1


  • Data de lançamento: 2023-02-01
  • Versão atual: 3.1
  • Tamanho do arquivo: 15.83 MB
  • Desenvolvedor: Zhenhua Xu
  • Compatibilidade: Requer iOS 8.0 ou mais tarde. e Android KitKat 4.4, Lollipop 5.0, Marshmallow 6.0, Nougat 7.0, Oreo 8.0, Android Pie 9.0, Quince Tart 10, Red velvet cake 11, Snow cone 12 ou posterior versões


fatos sobre Digit Matrix : Math Puzzles


A versão mais recente do Digit Matrix é a versão 3.1 e foi atualizada pela última vez 1 year ago. Digit Matrix is a collection of interesting mathematics exercises. This APP can improve the ability of calculation and logical reasoning, and cultivate mathematical thinking. It includes topics ranging from simple to very difficult. It is a good helper in learning mathematics or training the brain. Feature: Computing and Logical Reasoning Fifteen types. Infinite exercises Different Difficulties Easy to get started Five themes Contents: 1. Arithmetic Square Place the numbers from 1 to 9 into the cells (a different single number in each cell) so that the indicated equations are correct. Evaluate from left-to-right and top-to-bottom (ignore the usual precedence of the operators). 2. Chains Enter the numbers from 1 to X in the squares, once each, so that the given equations are correct. (Each equation begins at one square and ends at the next square; X is the total number of squares.) 3. SUMS Place a number from 1 to N into each cell. (N is the total number of cells in the grid.) Every cell must contain a different number. The numbers outside the grid, when given, indicate the sum of the numbers in the corresponding row, column, or diagonal. 4. Coins Place one coin into each cell such that the sum of the coins in each row and column matches the number to the left and the top. the same denomination may be used multiple times in each row or column. 5. Hundred A square grid whose cells are to be filled by some digits. The task is to fill additional digits in required cells such that the sum of numbers in each row and each column equals to 100. 6. Antimagic Square Place numbers from 1 to 2*N (N is the number of cells per side) into the cells so that there are exactly two numbers in each row, column and main diagonal. The sums of the two numbers are shown around the grid. 7. Products Place numbers from 1 to 2*N (N is the number of cells per side) into some cells so that each number is in exactly one cell, and no cell has more than one number. Each row and each column must contain exactly two numbers. Numbers outside the grid are the product of the two numbers in that row or column. 8. Products (Off-by-One) Place numbers from 1 to 2*N (N is the number of cells per side) into some cells so that each number is in exactly one cell, and no cell has more than one number. Each row and each column must contain exactly two numbers. Numbers outside the grid are 1 more or 1 less than the product of the two numbers in that row or column. 9. Addends Select Specified quantity of numbers from a given number set. Each number can not selected more than once. The sum of selected numbers must same as the given value. 10. Equality Delete Specified quantity of squares so that what remains is a correct equation. Use standard order of precedence (multiplication and division before addition and subtraction). 11. Alphametic Square Each letter represents a different digit. Figure out which letter corresponds to which digit so that all equations are true. Multi-digit numbers cannot start with the digit 0. 12. Matches Arithmetic Remove, Add or Move one to three matches so that the matches express a correct arithmetic equality. Click the match to remove it. Click the empty position to add the match. 13. Digit Twins Two numbers are connected by up to three line segments, and the two numbers are divided by their greatest common divisor at the same time. If the quotient is 1, the number will be eliminated. All numbers on the board need to be eliminated. 14. Divisor and multiple Numbers are added to 2 queues alternately. 2 groups of numbers are divided by their greatest common divisor in turn. Eliminate the number If the quotient is 1. 15. Numeric Factor Path On the board, if any two adjacent numbers have a common divisor greater than 1, they can be connected, and only one line can be connected between the two adjacent numbers. The final goal is to connect all the numbers into a non-intersecting path.. Baixe o aplicativo em 15.83 MB agora. Se você gostou de Digit Matrix, você vai gostar de Education apps como Aprenda inglês - AccelaStudy®; IQ boost; Learn Russian - AccelaStudy®; Learn Polish - AccelaStudy®; Kids Math Fun — Kindergarten;


Espelho 1: : Baixar APK



Digit Matrix Aplicativos semelhante a Digit Matrix : Math Puzzles




Mais aplicativos por Zhenhua Xu